Total Domination in Partitioned Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Total Domination in Partitioned Graphs

We present results on total domination in a partitioned graph G = (V,E). Let γt(G) denote the total dominating number of G. For a partition V1, V2, . . . , Vk, k ≥ 2, of V , let γt(G;Vi) be the cardinality of a smallest subset of V such that every vertex of Vi has a neighbour in it and define the following ft(G;V1, V2, . . . , Vk) = γt(G) + γt(G;V1) + γt(G;V2) + . . .+ γt(G;Vk) ft(G; k) = max{f...

متن کامل

Domination in partitioned graphs

Let V1, V2 be a partition of the vertex set in a graph G, and let γi denote the least number of vertices needed in G to dominate Vi. We prove that γ1 + γ2 ≤ 45 |V (G)| for any graph without isolated vertices or edges, and that equality occurs precisely if G consists of disjoint 5-paths and edges between their centers. We also give upper and lower bounds on γ1 + γ2 for graphs with minimum valenc...

متن کامل

Total domination in $K_r$-covered graphs

The inflation $G_{I}$ of a graph $G$ with $n(G)$ vertices and $m(G)$ edges is obtained from $G$ by replacing every vertex of degree $d$ of $G$ by a clique, which is isomorph to the complete graph $K_{d}$, and each edge $(x_{i},x_{j})$ of $G$ is replaced by an edge $(u,v)$ in such a way that $uin X_{i}$, $vin X_{j}$, and two different edges of $G$ are replaced by non-adjacent edges of $G_{I}$. T...

متن کامل

Nonnegative signed total Roman domination in graphs

‎Let $G$ be a finite and simple graph with vertex set $V(G)$‎. ‎A nonnegative signed total Roman dominating function (NNSTRDF) on a‎ ‎graph $G$ is a function $f:V(G)rightarrow{-1‎, ‎1‎, ‎2}$ satisfying the conditions‎‎that (i) $sum_{xin N(v)}f(x)ge 0$ for each‎ ‎$vin V(G)$‎, ‎where $N(v)$ is the open neighborhood of $v$‎, ‎and (ii) every vertex $u$ for which‎ ‎$f(u...

متن کامل

Total Roman domination subdivision number in graphs

A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 2009

ISSN: 0911-0119,1435-5914

DOI: 10.1007/s00373-008-0839-z